Achieving Highly Efficient Photoelectrochemical Water Oxidation with a TiCl4 Treated 3D Antimony‐Doped SnO2 Macropore/Branched α‐Fe2O3 Nanorod Heterojunction Photoanode

نویسندگان

  • Yang‐Fan Xu
  • Hua‐Shang Rao
  • Bai‐Xue Chen
  • Ying Lin
  • Hong‐Yan Chen
  • Dai‐Bin Kuang
  • Cheng‐Yong Su
چکیده

Utilizing photoelectrochemical (PEC) cells to directly collecting solar energy into chemical fuels (e.g., H2 via water splitting) is a promising way to tackle the energy challenge. α-Fe2O3 has emerged as a desirable photoanode material in a PEC cell due to its wide spectrum absorption range, chemical stability, and earth abundant component. However, the short excited state lifetime, poor minority charge carrier mobility, and long light penetration depth hamper its application. Recently, the elegantly designed hierarchical macroporous composite nanomaterial has emerged as a strong candidate for photoelectrical applications. Here, a novel 3D antimony-doped SnO2 (ATO) macroporous structure is demonstrated as a transparent conducting scaffold to load 1D hematite nanorod to form a composite material for efficient PEC water splitting. An enormous enhancement in PEC performance is found in the 3D electrode compared to the controlled planar one, due to the outstanding light harvesting and charge transport. A facile and simple TiCl4 treatment further introduces the Ti doping into the hematite while simultaneously forming a passivation layer to eliminate adverse reactions. The results indicate that the structural design and nanoengineering are an effective strategy to boost the PEC performance in order to bring more potential devices into practical use.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Water Splitting: Achieving Highly Efficient Photoelectrochemical Water Oxidation with a TiCl4 Treated 3D Antimony‐Doped SnO2 Macropore/Branched α‐Fe2O3 Nanorod Heterojunction Photoanode (Adv. Sci. 7/2015)

In article number 1500049, Dai-Bin Kuang and co-workers demonstrate a novel macroporous antimony-doped SnO 2 as dedicated charge collector with high surface area and optical enhancement to load hematite nanorods for highly efficient water splitting. With post treatments, the composite photoanode achieves an impressive photocurrent density under sun illumination.

متن کامل

A hydrothermally grown CdS nanograin-sensitized 1D Zr:α-Fe2O3/FTO photoanode for efficient solar-light-driven photoelectrochemical performance.

Well-defined CdS nanograin-sensitized one-dimensional (1D) Zr:α-Fe2O3 nanostructured arrays with enhanced photoelectrochemical performance are synthesized directly on F-doped SnO2 (FTO) using the hydrothermal method. Owing predominantly to the appropriate photogenerated electron-hole separation and charge collection in 1D Zr:α-Fe2O3 nanorods, hydrothermally deposited CdS/1D Zr:α-Fe2O3 samples e...

متن کامل

Solution growth of Ta-doped hematite nanorods for efficient photoelectrochemical water splitting: a tradeoff between electronic structure and nanostructure evolution.

Ta-doped hematite (α-Fe2O3) nanorod array films were successfully prepared on fluorine-doped tin dioxide (FTO) coated glass substrates via a facile solution growth process with TaCl5 as a Ta doping precursor. Under 1 sun illumination and at an applied potential of 1.0 V vs. Ag/AgCl, the Ta-doped α-Fe2O3 photoanode with optimized dopant concentration showed a photocurrent density as high as 0.53...

متن کامل

CdS Nanoparticle-Modified α-Fe2O3/TiO2 Nanorod Array Photoanode for Efficient Photoelectrochemical Water Oxidation

In this work, we demonstrate a facile successive ionic layer adsorption and reaction process accompanied by hydrothermal method to synthesize CdS nanoparticle-modified α-Fe2O3/TiO2 nanorod array for efficient photoelectrochemical (PEC) water oxidation. By integrating CdS/α-Fe2O3/TiO2 ternary system, light absorption ability of the photoanode can be effectively improved with an obviously broaden...

متن کامل

Surface Engineered Doping of Hematite Nanorod Arrays for Improved Photoelectrochemical Water Splitting

Given the narrow band gap enabling excellent optical absorption, increased charge carrier density and accelerated surface oxidation reaction kinetics become the key points for improved photoelectrochemical performances for water splitting over hematite (α-Fe2O3) photoanodes. In this study, a facile and inexpensive method was demonstrated to develop core/shell structured α-Fe2O3 nanorod arrays. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2015